相珺1983年生,博士,教授,硕士生导师,辽宁省百千万人才工程万人层次国家自然科学基金委通讯评审专家,Journal of Alloys and Compounds》、《Ceramics International》、《Surface and Coatings Technology》、《Solid State SciencesSCI国际期刊审稿人,曾获批2020年国家留学基金资助的美国宾夕法尼亚大学国家公派访问学者。

科学研究工作主要为燃料电池、超级电容器和水分解制氢等新能源材料与技术,先进陶瓷复合材料与功能材料,以及金属表面改性功能涂层。主持国家自然科学基金1项,辽宁省科技厅项目2项,辽宁省教育厅项目2项;参与国家自然科学基金3项,辽宁省项目3项。先后在Journal of Power SourcesElectrochimica ActaCeramics InternationalSolid State Sciences等国内外期刊上发表高水平学术论文64篇,他引449次。其中SCI论文收录39篇(中科院分区Q2以上25篇),他引218次。

Ø 教育及工作经历

2002.09-2006.07    辽宁工程技术大学       材料科学与工程          工学学士

2007.09-2010.01    辽宁工程技术大学       材料加工工程            工学硕士

2010.03-2013.09    哈尔滨工业大学         材料学                  工学博士

2013.10-2017.12    辽宁工业大学           材料科学与工程学院      讲师

2018.01-2022.12    辽宁工业大学           材料科学与工程学院      副教授

2023.01-至今       辽宁工业大学           材料科学与工程学院      教授

Ø 研究方向

1. 新能源材料:燃料电池、超级电容器

2. 先进陶瓷复合材料与功能材料

3. 金属表面改性功能涂层:热障涂层、环境障碍涂层、激光熔覆涂层、耐蚀耐磨涂层等

Ø 科研课题

1. 辽宁省教育厅青年项目,LJKQZ2021145,钴酸镍基电极材料的微纳结构调控与超级电容器性能研究,2021/09-2023/08,主持

2. 辽宁省科技厅自然科学基金面上项目2021-MS-320,双离子掺杂硅酸镧的自由氧/间隙氧共传输性能研究,2021/08-2023/07主持;

3. 国家自然科学基金青年基金项目,51702143,空位/间隙氧复合调控对硅酸镧微结构与电学性能的影响,2018/01-2020/12,主持;

4. 辽宁省科技厅博士启动项目,201601342,氧基磷灰石结构硅酸镧固体电解质的抗老化失效研究,2016/09-2018/09,主持;

5. 辽宁省教育厅一般项目,L2015238,阳离子空位型硅酸镧的Si位掺杂研究,2015/06-2018/05,主持;

6. 国家自然科学基金面上项目,51971106,非晶合金层状复合材料塑性稳定性的微观机制研究,2020/01-2023/12,参与;

7. 辽宁省科技厅自然科学基金项目,2019-MS-171,汽车空调涡旋盘材料与成型工艺的研究,2019.08-2022.08,参与;

8. 辽宁省科技厅联合基金项目,201602378,梯度多孔Mg-Zn-Ag合金的制备及表面复合改性研究,2016.06-2018.06,参与;

9. 辽宁省教育厅一般项目,L2014243,晶粒择优取向对纯铜摩擦磨损性能的影响机制研究,2014.06-2017.05,参与;

10. 国家自然科学基金面上项目,51272054,掺杂A2B2O7型陶瓷的有序无序转变与离子传输特性关联研究,2013.012016.12,参与;

11. 国家自然科学基金青年基金,51002038,六铝酸盐片晶增韧稀土锆酸盐热障氧化物材料的制备与热物理性能研究,2011.012013.12,参与。

Ø 代表性论文及专利

[1] Wen-Duo Yang, Jun Xiang, Rong-Da Zhao*, et al. Nanoengineering of ZnCo2O4@CoMoO4 heterogeneous structures for supercapacitor and water splitting applications. Ceramics International, 2023, 49(3): 4422–4434. (SCI, IF=5.532)

[2] Sroeurb Loy, Jun Xiang*, Wen-Duo Yang, et al. 3D hierarchical flower-like MnCo2O4@NiO nanosheet arrays for enhanced-performance asymmetric supercapacitors. Journal of Alloys and Compounds, 2022, 922: 166286. (SCI, IF= 6.371)

[3] Song Shi, Jun Xiang*, Sroeurb Loy, et al. Electrochemical oxygen evolution reaction of controllable self-assembled CuCo2O4. IONICS, 2022, 28: 4381–4394.  (SCI, IF=2.961)

[4] Nan Bu, Jun Xiang*, Sroeurb Loy, et al. Preparation of three-dimensional Co3O4@NiMoO4 nanorods as electrode materials for supercapacitors. Materials Chemistry and Physics, 2022, 288, 126419. (SCI, IF=4.778)  

[5] Yi-Fei Di, Jun Xiang*, Nan Bu, et al. Sophisticated structural tuning of NiMoO4@MnCo2O4 nanomaterials for high performance hybrid capacitors. Nanomaterials, 2022, 12, 1674. (SCI, IF=5.719)

[6] Wen-Duo Yang, Jun Xiang, Sroeurb Loy, et al. Core–Shell structured NiCo2O4@ZnCo2O4 nanomaterials with high energy density for hybrid capacitors. Journal of Nanoelectronics and Optoelectronics, 2021, 16 (7): 1134-1142.  (SCI, IF= 0.697)

[7] Xiang-Sen Meng, Jun Xiang, Nan Bu, et al. Co3S4/NiCo2S4 nano-arrays on nickel foam as energy storage for supercapacitors. Journal of Nanoelectronics and Optoelectronics, 2021, 16(6): 891-904.

[8] Chen Hong-Quan, Xiang Jun*, Zhao Rong-Da, et al. ZnS/NiCo2S4 arrays on nickel foam as an energy storage for supercapacitor. IONICS, 2021, 27(2): 867–874.  (SCI, IF=2.961)

[9] J Xiang*, H Q Chen, J H Ouyang*, et al. Stability and compatibility of lanthanum silicates electrolyte with standard cathode materials. Ceramics International, 2019, 45: 6183–6189. (SCI, IF=4.527)

[10] J Xiang, J H Ouyang*, Z G Liu. Microstructure and electrical conductivity of apatite-type La10Si6xWxO27+δ electrolytes. Journal of Power Sources, 2015, 284: 4955. (SCI, IF=9.127)

[11] J Xiang, J H Ouyang*, Z G Liu, et al. Influence of pentavalent niobium doping on microstructure and electrical conductivity of oxy-apatite La10Si6O27 electrolytes. Electrochimica Acta, 2015, 153: 287294. (SCI, IF=6.901)

[12] J Xiang, Z G Liu, J H Ouyang*, et al. Ionic conductivity of oxy-apatite La10Si6xInxO27δ solid electrolyte ceramics. Journal of Power Sources, 2014, 251: 305310. (SCI, IF=9.127)

[13] J Xiang, Z G Liu, J H Ouyang*, et al. Influence of Sintering Parameters on Microstructure and Electrical Conductivity of La10Si6O27 Ceramics. Ceramics International, 2014, 40(1): 24012410. (SCI, IF=4.527)

[14] J Xiang, Z G Liu, J H Ouyang*, et al. Influence of Doping with Various Cations on Electrical Conductivity of Apatite-Type Neodymium Silicates. Ceramics International, 2013, 39(5): 48474851. (SCI, IF=4.527)

[15] J Xiang, Z G Liu, J H Ouyang*, et al. Synthesis and Electrical Conductivity of La10Si5.5B0.5O27+δ (B=In, Si, Sn, Nb) Ceramics. Solid State Ionics, 2012, 220: 711. (SCI, IF=3.785)

[16] J Xiang, Z G Liu, J H Ouyang*, et al. Synthesis, Structure and Electrical Properties of Rare-earth Doped Apatite-Type Lanthanum Silicates. Electrochimica Acta, 2012, 65: 251256. (SCI, IF=6.901)

Ø 研究生招生

本课题组招收对新能源材料、陶瓷材料、复合材料、功能材料和涂层材料具有浓厚兴趣并具有较强实验动手能力,拥有材料科学、材料加工、材料物理化学、无机材料和高分子材料等相关专业背景的硕士研究生。

关闭